• Soufflerie subsonique C2

    Un large éventail de mesures et de démonstrations sont possibles avec l’équipement. Une sélection utilisant les modèles et l’instrumentation fournis est:

    • Études de visualisation de flux autour d’un profil aérodynamique et d’un cylindre
    • Mesure de la distribution de pression autour d’un profil aérodynamique à différents angles d’attaque
    • Mesure de la distribution de pression autour d’un cylindre
    • Mesure de la portance et de la traînée sur un profil aérodynamique avec fente de bord d’attaque et volet de bord de fuite
    • Mesures de distribution de vitesse et de pression à l’aide d’un tube statique de Pitot et d’une sonde de lacet
    • Mesure de traînée pour une sélection de modèles de formes différentes mais de diamètre équatorial commun
    • Démonstration du battement d’un profil aérodynamique
    • Étalonnage de l’indicateur de vitesse en soufflerie à l’aide d’un tube statique de Pitot et d’un manomètre incliné
    • Étude du sillage derrière un cylindre ou un profil aérodynamique à l’aide d’un râteau d’enquête de sillage
  • Station de travail EF-WS

    La gamme Engineering Fundamentals est conçue pour permettre aux étudiants d’acquérir une compréhension des principes fondamentaux de l’ingénierie par le processus d’apprentissage via l’expérimentation pratique.

  • Statique des poutres EF-1.3

    Le kit d’expérience EF-1.3 – Poutres permet aux étudiants d’analyser le comportement de différents types de poutres dans diverses conditions de charge et également de créer et de tester une sélection de portiques et de fermes.

  • SU-320 Programmateur Universel

    Caractéristiques :

     

    – Fournit une bande passante DUT de 75MHz et une distorsion du signal < ±2,5nS.
    – Fournit un fonctionnement en mode autonome. Avec 5 touches et un écran LCD 20×4, vous pouvez sélectionner un projet et commencer à programmer facilement sans PC.
    – Conception portable et compacte, minimisant l’espace de travail et maximisant l’efficacité.
    – Permet de tester l’insertion du circuit intégré et de vérifier les contacts avant la programmation universelle. En mode AUTO, il suffit d’insérer le CI, et le SU-320 démarre tous les processus automatiquement.
    – Offre une grande souplesse d’extension grâce à sa conception modulaire. Il peut être utilisé comme programmateur universel à site unique ou comme programmateur universel de groupe.
    – Fournit un logiciel orienté vers la production de masse avec des informations complètes sur les journaux pour une meilleure traçabilité.

  • System de formation pour l’introduire à la robotique et l’haptique

    Aperçu:
    Le dispositif haptique Geomagic Touch est un robot à six articulations tournantes, dont trois sont actionnées. Les trois articulations non actionnées sont les articulations du poignet. Les trois moteurs peuvent actionner l’effecteur terminal – la pointe du stylet – pour couvrir toute la région X, Y, Z dans son espace de travail. La mesure de position le long de X, Y et Z est effectuée à l’aide de codeurs numériques tandis que la mesure des rotations autour de ces axes (roulis, tangage et lacet) est effectuée à l’aide de potentiomètres.

    Caractéristique technique:

    • Dispositif haptique Geomagic Touch (anciennement Phantom Omni) certifié CE
    • Détection de position à six degrés de liberté
    • Conception portable et empreinte compacte pour une flexibilité au travail
    • Stylet amovible pour la personnalisation de l’utilisateur final
    • Deux interrupteurs momentanés intégrés sur le stylet pour une facilité d’utilisation et une personnalisation par l’utilisateur final
    • Repose-poignet pour maximiser le confort de l’utilisateur
    • Construit avec des composants métalliques et des plastiques moulés par injection
    • Encrier d’ancrage du stylet pour l’étalonnage automatique de l’espace de travail
  • Système aérodynamique à deux rotors

    Le système de commande à entrées multiples et sorties multiples (MIMO) fortement couplé en croix

    Le système aérodynamique à deux rotors (TRAS) est une configuration de laboratoire conçue pour les expériences de contrôle. À certains égards, son comportement ressemble à celui d’un hélicoptère. Du point de vue du contrôle, il illustre un système non linéaire d’ordre élevé avec des couplages croisés importants.

  • Système de freinage antiblocage ABS

    Caractéristiques :

    • unité mécanique: châssis rigide, double roue, moteur plat DC à couple élevé, frein électromécanique et amortisseur.
    • capteurs de position: codeurs incrémentaux.
    • interface d’alimentation.
    • Carte PCI interne d’E / S RT-DAC ou carte USB externe (le contrôle PWM et les logiques d’encodeur sont stockés dans une puce XILINX)
  • Système de lévitation magnétique

    FONCTIONNALITÉS : 
    • Un degré de liberté (1 DOF) – la bille lévite verticalement de haut en bas
    • Electroaimant composé d’une bobine magnétique et d’un noyau en acier
    • Capteur de position de boule photo-sensible
    • Le capteur de position de la boule peut être calibré (à l’aide des boutons de gain et de décalage) en fonction des conditions d’éclairage
    • Capteur de courant de bobine analogique
    • Câble et connecteurs faciles à connecter
    • Entièrement compatible avec MATLAB® / Simulink® et LabVIEW ™
    • Modèle de système entièrement documenté et paramètres fournis pour MATLAB® / Simulink®, LabVIEW ™ et Maple ™
    • Conception d’architecture ouverte, permet aux utilisateurs de concevoir leur propre contrôleur

  • Système de sonde à ondes H40

    SPÉCIFICATIONS TECHNIQUES

    Ne convient pas pour une utilisation dans l’eau salée

    Sonde à double fil:

    • Construction: acier inoxydable trempé avec extrémités coniques
    • Gamme de hauteurs de vagues: bijoux en saphir synthétique
    • Coefficient de température: 2% d’envergure par changement de 1ºC de la température de l’eau. Le module de surveillance des vagues intègre une commande pour un étalonnage et une réinitialisation faciles. Fourni avec support permettant l’étalonnage de la sonde par pas de 10 mm jusqu’à un maximum de 170 mm

    Le système intègre un module d’alimentation. Des alimentations alternatives sont disponibles pour un fonctionnement sur secteur (reportez-vous au résumé des spécifications).

    • Entrée (secteur ca): 220 / 240V, 50Hz ou 120V / 60Hz
    • Consommation: 700mA nominal à pleine charge
    • Sortie: ± 15 V cc régulée avec protection contre les courts-circuits

    Module de surveillance des vagues:

    • Connexions d’entrée: Deux prises de 4 mm sur le panneau avant ou via le câblage arrière pour le capteur. Deux prises de 4 mm sur le panneau avant pour la
      «compensation».
    • Tension de sortie: ± 10 V max., Centre zéro, via connecteur coaxial BNC en face avant ou via connecteur arrière max. charge 10mA
    • Sortie courant: ± 10mA max., Centre zéro, via impédance source de connecteur arrière 1k
    • Indicateur de niveau: centre zéro pour le réglage du point d’origine. Potentiomètre 10 tours avec cadran calibré pour le réglage de la tension de sortie. Potentiomètre préréglé à un tour pour le réglage de la compensation du câble.
      Réponse en fréquence: 10 Hz (jusqu’à 95% de sortie)
      Fréquences: 4 kHz, 5 kHz, 6 kHz, 7 kHz, 9 kHz, 10 kHz Décalage de
      phase: 17 ° (à 95% de sortie)
      Énergie: valeurs nominales
  • Système multitank

    Vérification pratique des méthodes avancées de contrôle linéaire et non linéaire

Menu principal