• ACE Kit 1104 : Système Monocarte pour le Développement dans le Domaine de Contrôle

    Les avantages majeurs de la carte DS1104 :

    • Système compact
    • Se branche directement à un PC tour (idéal pour des salles de travaux pratiques)
    • Excellent rapport performance/prix
    • Idéal pour les petites applications de contrôle
    • Grande facilité d’utilisation grâce à la suite logicielle dSPACE (RTI et ControlDesk)
  • banc de vibrations fondamentales VFT

    Caractéristiques

    Électrique
    Source d’énergie 110 V / 220 V 50 / 60Hz
    Base VFT
    Dimensions 36 ″ lx 35 ″ hx 15 ″ d (94 cm x 90 cm x 40 cm)
    Poids 100 lb (45 kg)
    Moteur d’excitation Moteur à vitesse variable entraîné par logiciel / manuel avec charge de balourd intégrée.
    Isolation contre les vibrations Quatre pieds en caoutchouc
    Module de vibration pendulaire (en option)
    Pendule Longueur et poids réglables
    Module masse-ressort
    Printemps Trois raideurs différentes, empilables pour 2 DOF
    Masse Trois poids, empilables
    Module de vibration torsionnelle
    Arbre Trois diamètres différents
    Rotor Trois rotors de masse et d’inertie différentes
    Module de contrôle des vibrations
    Amortisseur de masse accordé Quincaillerie pour amortisseur à ressort de masse et quincaillerie pour absorbeur de poutre
    Poutre avec traitement d’amortissement Une couche viscoélastique et une couche contrainte
    Amortisseur de torsion Un dashpot et trois fluides
    Module de vibration de faisceau
    Faisceau Une épaisseur d’acier, un aluminium, un plastique
    Masse Trois blocs de poids
    Les soutiens Configurable par l’utilisateur: cantilever ou simplement supporté, longueur réglable
    L’acquisition des données
    Nombre de canaux 6
    Spécifications DAQ échantillonnage simultané, connexion USB
    Logiciel
    DAQ et logiciel d’analyse Forme d’onde temporelle, spectre, FRF, contrôle moteur
    Kit de capteur
    Accéléromètre Deux accéléromètres sans fil à un seul axe, deux capteurs de rotation, un tachymètre, un trans-récepteur à échantillonnage simultané à six canaux pour un dispositif d’acquisition de données sans fil, un câble USB
    Transducteur de force de support de faisceau (optionnel)
  • BiSKIT 101: Formateur en Télécommunications

    Quels sujets pouvons-nous enseigner avec l’ETT-101 ?

    • Communications analogiques de base :

    AM, FM, DSB, SSB, PAM, TDM, PWM, Superhétérodyne, Speech in comms, PLL, QAM, SNR CONCEPTS

    • Communications numériques :

    PCM, PCM-TDM, ASK, BPSK, FSK, GFSK, Eye Patterns, DPSK, QPSK, Spread Spectrum, Line Coding, Delta Modulation, Noise Generation, SNR Concepts, et plus

    Toutes les expériences sont entièrement documentées, avec des sections de questions et réponses entièrement intégrées dans le texte. Vous disposez maintenant d’une solution clé en main pour l’enseignement de votre programme de communication, avec une capacité d’expansion dans le futur.

     

  • Caméras d’imagerie Terahertz

    Modèles camera THz :
    • Tera-256 :  256 pixels (16 x 16 array)  , 1.5 mm pixel pitch , NEP* = 1 nW/ √Hz, Taille de la camera  : 11.5 cm x 11.5 cm x 4.2 cm .
    • Tera-1024 : 1024 pixels (32 x 32 array) , 1.5 mm pixel pitch ,NEP* = 1 nW/√Hz , Taille de la camera  : 11.5 cm x 11.5 cm x 4.2 cm .
    • Tera-4096 : 4096 pixels (64 x 64 array) , 1.5 mm pixel pitch , NEP*=1 nW/√Hz , Taille de la camera 16.5 cm x 16.5 cm x 4.5 cm .
    • Linear Tera-1024 : 1024 pixels (256 x 4 array) , 1.5 x 1.5 mm pixel size* ,  NEP = 1 nW/√Hz ,  Taille de la camera 44 cm x 4.3 cm x 8.9 cm.
    • TeraFAST-256 :Taux d’acquisition d’image: 5000 fps (5 KHz) , Vitesse de numérisation: jusqu’à 15 m / sec (900 m / min)
      Puissance / pixel minimum détectable: 100 nW (à 5000 fps) ; 256 pixels (256 x 1 array)- taille évolutive ,Taille de pixel 3 x 1,5 mm , NEP = 1 nW/√Hz
  • Chargeur de roulement 3/4 ”et 1” M-BL-3/4 et M-BL-1

    ce kit d’accessoires du simulateur de défauts dans les machines permet de :

    • Étudier les effets de charge radiale des roulements.
    • Améliorez l’amplitude spectrale du système
  • EMONA TIMS-301C Système de Modélisation en Télécommunications

    Quelle est la particularité de TIMS-301 ?

     

    – L’ensemble de MODULE AVANCÉ ajoute plus de 50 fonctions supplémentaires pour mettre en œuvre la vaste gamme de capacités d’expérimentation du TIMS.
    – Des modules basés sur le DSP sont disponibles pour comparer les performances des circuits électroniques traditionnels avec les techniques de traitement numérique du signal (DSP) dans l’environnement TIMS, ainsi que pour mettre en œuvre des schémas plus complexes.
    – Les modules internes peuvent être conçus pour s’intégrer dans le système TIMS grâce à l’architecture ouverte de TIMS.
    – Le TIMS-301C comprend un instrument virtuel intégré qui peut être connecté à un PC pour donner des fonctions d’oscilloscope et d’analyse de spectre (FFT).
    – Les « TIMS Trunks » sont uniques au TIMS et permettent de mettre en réseau un laboratoire TIMS. L’instructeur peut envoyer jusqu’à 3 signaux de télécommunications du système TIMS maître, vers le système TIMS de chaque élève.
    – Le TIMS est entièrement autonome. Le seul équipement supplémentaire nécessaire est un oscilloscope.
    – Il est rapide et facile à utiliser. Le panneau avant de chaque module est disposé de manière fonctionnelle, avec les entrées à gauche et les sorties à droite du panneau. Toutes les entrées et les sorties sont codées par couleur pour indiquer le type de signal : jaune pour les signaux analogiques et rouge pour les signaux numériques. Des prises de 4 mm de haute qualité sont utilisées partout.

  • Ensemble de type d’accouplement M-CK-3/4

    ce kit d’accessoires du simulateur de défauts dans les machines sert à :

    • Apprenez les effets de la rigidité du couplage sur la dynamique du rotor et signature vibratoire.
    • Clarifier la complexité des problèmes de désalignement des arbres de machines (le diagramme spectral du désalignement de l’arbre est une fonction rigidité de couplage).
  • Générateur Terahertz

    Modèles suivant la fréquences  :

    1-Source THz 100 GHz : Puissance RF de sortie~ 80 mW ,180 mW ,400 mW ,0,8 W /Antenne conique / Sortie de type bride /Isolateur protecteur /Modulation TTL.

    2-Source THz 140 GHz :  Puissance RF de sortie~ 30 mW ,90 mW ,180 mW /Antenne conique / Sortie de type bride /Isolateur protecteur /Modulation TTL.

    3-Source THz 200 GHz :  Puissance RF de sortie > 40 mW , 100 mW 200 mW /Antenne conique / Sortie de type bride /Isolateur protecteur /Modulation TTL.

    4-Source THz 300 GHz :  Puissance RF de sortie 290 GHz ~ 10 mW , 280 GHz> 20/40 mW /Antenne cornet diagonale / Sortie de type bride /Isolateur protecteur /Modulation TTL.

     

  • Gyroscope laser HeNe LM-0600

    Objectifs pédagogiques

    • Effet Sagnac
    • Interférence Plaques demi et quart d’onde
    • Laser annulaire HeNe
    • Détection de fréquence de battement
    • Déphaseur optique 90°
    • Étalon monomode
    • Polarisation linéaire et elliptique
    • Discrimination de direction
    • Effet de verrouillage
    • Mesure d’angle de haute précision
    • Gyroscope laser actif
    • Rotation contrôlée par processeur
    • Comptage de fréquence quadruple
  • Interféromètre laser Michelson LM-0100

    Objectifs pédagogiques

    • DPSSL comme source cohérente
    • Propriétés du rayonnement laser
    • Interférence à deux faisceaux
    • Contraste de frange
    • Longueur de cohérence
    • Détection de franges
    • Ondes sphériques et planes
    • Laser HeNe à deux modes
  • kit Cocked Rotor M-CR-5/8

    • Découvrez les effets d’une poulie qui n’a pas été correctement montée sur l’arbre.
    • Apprenez la signature vibratoire d’un rotor désaxé.
    • Développer des méthodes pour corriger les problèmes de rotor désaxé.
    • Découvrez l’effet de la variation du moment d’inertie de masse sur l’amplitude des vibrations.
  • Kit d’étude de fissure dans les arbres M-CSRK-3/4

    Ce kit du simulateur de défauts dans les machines MFS sert à :

    • Etudier les effets de la fissure sur les fréquences naturelles et comportement vibratoire.
    • Développer une technique de diagnostic pour détecter les fissures à un stade précoce.
    • Étudiez la propagation et la respiration des fissures. Appliquer des techniques avancées de traitement du signal, telles que ondelettes, analyse temps-fréquence conjointe, analyse de séries chronologiques, étudier les vibrations causées par la fissure.

Menu principal