-
Table d’anatomie 3D pour dissection virtuelle
Caractéristiques Techniques:
Applications : pour la formation
Fonction : de dissection virtuelle
Configuration : mobile
Fonctionnalité : à hauteur variable, pivotante
Forme : rectangulaire
Laboratoire technologique complet:
– Anatomie humaine détaillée, avec des informations « section par section » sur les divers systèmes corporels
– Logiciel de radiologie permettant aux étudiants et aux professeurs de comprendre et de pratiquer la planification pré-chirurgicale avant d’affronter la situation chirurgicale réelle -
Soufflerie contrôlée par ordinateur C30
SPÉCIFICATIONS TECHNIQUES
Une soufflerie subsonique autonome commandée par ordinateur pour la réalisation d’expériences en aérodynamique.
La soufflerie est montée sur une base en acier sur roues pour la mobilité
L’unité fonctionne en circuit ouvert
Ventilateur aspirant à courant alternatif commandé par onduleur pour entraîner le flux d’air à travers la section de travail
Contrôle précis de la vitesse jusqu’à 40 m/s
Le conduit comprend un redresseur de flux en nid d’abeille pour uniformiser la direction du flux.
La section de travail comporte trois raccords sur sa partie supérieure pour incorporer des tubes de Pitot. Ceux-ci sont situés au début de la section de travail, en amont et en aval de l’emplacement du modèle testé.
Tous les modèles optionnels et auto-construits sont introduits par une trappe circulaire de 160 mm de diamètre. Chacun des accessoires fournis est intégré dans des trappes individuelles qui comportent une échelle angulaire permettant de tourner manuellement les modèles à des angles connus.Section de travail
- Longueur : 600 mm
- Largeur : 310 mm
- Hauteur : 310 mm
Puissance du ventilateur axial – Environ 4 kW
Vitesse de rotation du ventilateur – 3000 tr/min
Plages de mesure
- Manomètre : 0-250mm H₂0
- Vitesse du vent : 0-40m/s
- Angle d’inclinaison : +/- 180°
- Force de levage : +/- 10N
- Force de traînée : +/- 10N
- Moment de tangage : +/- 3N
-
Échangeur de chaleur tubulaire HT31X
SPÉCIFICATIONS TECHNIQUES
Thermocouples sur l’accessoire
-Position médiane du fluide chaud
-Fluide chaud en position médiane -Fluide froid en position médianeThermocouples sur l’unité de service
-Entrée du fluide chaud
-Sortie de fluide chaud
-Entrée du fluide chaud -Sortie du fluide chaud
-Entrée du fluide chaud -Sortie du fluide chaud -Entrée du fluide froid -Sortie du fluide froid
-Nombre de sections de tubes X2
-Surface de transfert de chaleur : 0.02m² -
Echangeur de Chaleur à Réservoir à double enveloppe avec serpentin et agitateur HT34X
SPÉCIFICATIONS TECHNIQUES
L’accessoire consiste en une cuve à double enveloppe présentant les caractéristiques suivantes :- Le récipient est constitué d’une paroi en acier inoxydable, d’une base en PVC et d’un couvercle en acrylique transparent.
- Une enveloppe extérieure en verre permet d’entourer la paroi du récipient d’un fluide chaud pour un chauffage indirect depuis l’extérieur. Un serpentin en acier inoxydable placé à l’intérieur de la cuve permet de chauffer indirectement le fluide froid contenu dans la cuve depuis l’intérieur.
- La cuve est équipée d’un agitateur à vitesse variable et d’un dispositif de déflecteur pour assurer un mélange complet du contenu de la cuve en cas de besoin.
- Un trop-plein réglable permet de faire varier le volume de liquide à l’intérieur de la cuve, avec une capacité maximale de deux litres et une capacité minimale d’un litre.
- La cuve peut être utilisée par lots en la remplissant simplement jusqu’au trop-plein ou avec une alimentation continue en liquide froid à la base de la cuve, le liquide excédentaire s’écoulant par le trop-plein pour s’égoutter.
- La température peut être mesurée aux 5 endroits suivants :
– Contenu de la cuve (liquide froid)
– Entrée du fluide chaud dans l’enveloppe/le serpentin
– Sortie du fluide chaud de la chemise/du serpentin
– Sortie d’eau froide vers l’égout
– Entrée du fluide froid dans le réservoir - Les raccords rapides pour le fluide chaud et le fluide froid permettent une connexion rapide au HT30X et une conversion de l’enveloppe chauffante au serpentin
-
Échangeur de chaleur à plaques HT32X
Détails de la plaque :
- Dimensions globales de la plaque : 191 mm x 73 mm
- Surface effective de transfert de chaleur : 0.12m2
- Surface de transmission de chaleur projetée : 0.015m2
- Nombre de plaques : 10
- Panneau conducteur (épaisseur de la plaque) : 0,26 mm
- Distance entre les plaques : 2,1 mm
- Matériau : Acier inoxydable, cuivre
-
Échangeur de chaleur à plaques HT32X
Détails de la plaque :
- Dimensions globales de la plaque : 191 mm x 73 mm
- Surface effective de transfert de chaleur : 0.12m2
- Surface de transmission de chaleur projetée : 0.015m2
- Nombre de plaques : 10
- Panneau conducteur (épaisseur de la plaque) : 0,26 mm
- Distance entre les plaques : 2,1 mm
- Matériau : Acier inoxydable, cuivre
-
Unité de service Echangeurs de Chaleur HT30X
Les échangeurs de chaleur sont facilement interchangeables, avec des goujons d’emplacement et des tubes d’interconnexion flexibles avec des connecteurs à pousser.
Unité d’entretien légère, conçue pour accueillir une gamme d’échangeurs de chaleur de petite taille.
Il comprend un réservoir d’eau chaude, une pompe de recirculation bidirectionnelle de l’eau chaude, un système de contrôle de l’eau froide, une interface informatique et tous les instruments nécessaires.
Le réservoir d’eau chaude est fabriqué en acrylique transparent (pour une meilleure visibilité) et comprend un réchauffeur de 2 kW avec un dispositif thermostatique de coupure en cas de surchauffe et de détection de bas niveau d’eau.
Le sens de l’eau chaude peut être facilement inversé à l’aide d’un logiciel, ce qui permet d’effectuer des recherches sur le co-courant et le contre-courant dans une large gamme de débits contrôlés par ordinateur.
Le système d’eau froide comprend un régulateur de pression réglable manuellement et une vanne de contrôle de débit contrôlée par logiciel.
Il est possible d’obtenir des débits supérieurs à 5 L/min pour les deux flux de fluides, mais ce débit peut être limité par certains modèles d’échangeurs de chaleur (par exemple, les échangeurs de chaleur à plaques HT32X et HT37X).
L’unité de service permet de contrôler jusqu’à douze températures (thermocouples de type K et T). Plage de fonctionnement, 0-75°C, résolution 0,1°C
Deux débitmètres sont inclus. Plage de fonctionnement de 0,3 à 10 L/min, résolution de 0,1 L/min, température de fonctionnement de 0 à 125°C.
Toutes les données sont disponibles sur un PC Windows (fourni par l’utilisateur), via une interface USB. Cet ordinateur est également utilisé pour contrôler manuellement ou automatiquement le débit d’eau froide, la température et le débit d’eau chaude, le ventilateur à vitesse variable et l’agitateur.
Un logiciel complet pour une utilisation pédagogique est inclus en standard.
Comprend des installations matérielles à sécurité intégrée
Connexion de l’armBUS au PC via le réseau local.
20 utilisateurs peuvent se connecter pour visualiser les relevés en direct au sein du réseau local.
Les options maître et visualisation seulement sont disponibles au moment de la configuration lorsque plusieurs utilisateurs utilisent la machine.
Un manuel d’instructions complet est inclus. -
Convection libre et forcée HT19X
Capacités Pédagogiques :
- Relation entre la température de surface et la puissance absorbée en convection libre
- Relation entre la température de surface et la puissance absorbée en convection forcée
- Compréhension de l’utilisation des surfaces étendues pour améliorer le transfert de chaleur à partir de la surface
- Détermination de la distribution de la température le long d’une surface étendue
- Comparaison des caractéristiques d’une plaque plane verticale et horizontale en convection libre
- Détermination de la vitesse caractéristique, des nombres de Reynolds, de Grashof et de Rayleigh pour une plaque plane en convection libre
- Calcul du coefficient de transfert de chaleur moyen du radiateur à broches en convection forcée
- Comparaison des configurations horizontale et verticale d’un échangeur à ailettes en convection libre
-
Lois du transfert de chaleur par rayonnement et échange de chaleur par rayonnement HT13X
Capacités Pédagogiques :
-Loi de l’inverse du carré en utilisant la source de chaleur et le radiomètre ou la source de lumière et le posemètre
-la loi de Stefan-Boltzmann en utilisant la source de chaleur et le radiomètre.
-Détermination du facteur de vue
-Émissivité à l’aide d’une source de chaleur, de plaques métalliques et d’un radiomètre
-La loi de l’inverse des carrés pour la lumière
-Lois du circuit de Kirchhoff utilisant la source de chaleur, les plaques métalliques et le radiomètre
-Facteurs d’aire utilisant la source de chaleur, l’ouverture et le radiomètre
-Loi du cosinus de Lambert à l’aide de la source lumineuse (tournée) et du posemètre
-Loi d’absorption de Lambert à l’aide de la source lumineuse, des plaques filtrantes et du posemètre -
Appareil de Conduction thermique Radiale HT12X
Capacités Pédagogiques:
- Comprendre l’utilisation de l’équation de Fourier pour déterminer le taux de flux de chaleur à travers des matériaux solides
- Mesurer la distribution de la température pour la conduction d’énergie en régime permanent à travers la paroi d’un cylindre (flux d’énergie radial)
- Déterminer la constante de proportionnalité (conductivité thermique k) du matériau du disque
-
Appareil de Conduction thermique linéaire HT11X
Capacités Pédagoique :
Comprendre l’utilisation de l’équation du taux de Fourier pour déterminer le taux de flux de chaleur à travers des matériaux solides.
Mesure de la distribution de la température pour une conduction d’énergie en régime permanent à travers une paroi plane uniforme et une paroi plane composite
Coefficient global de transfert de chaleur pour différents matériaux en série
Détermination de la constante de proportionnalité (conductivité thermique k) de différents matériaux (conducteurs et isolants)
Relation entre le gradient de température et la surface de la section transversale
Effet de la résistance de contact sur la conduction thermique
Comprendre l’application des mauvais conducteurs (isolants)
Observation de la conduction à l’état instable (qualitatif uniquement) -
Système de Commande de Moteur Servo/Pendulaire
Ce système unique permet aux étudiants de comprendre le contrôle des moteurs sous deux aspects : contrôler la vitesse d’un moteur – un système de contrôle servo – et contrôler la position du rotor d’un moteur – un pendule inversé. Un seul équipement permet de résoudre ces deux problème
- ACCUEIL
- PRODUIT
- Division des Sciences de l’ingénieur
- Instruments de Tests et Mesures
- Alimentation de laboratoire
- Oscilloscope
- Multimètre
- Générateur de Fonction Arbitraire / Analogique
- Générateur de Signaux
- Analyseurs de spectre
- Analyseur de réseau vectoriel
- LCR Mètre
- Fréquence mètre
- Impédance mètre
- Analyseur de réseau Électrique
- Charge Electronique
- Matériel didactique portable
- Equipements de laboratoire
- Génie électrique
- Génie Mécanique
- Génie civil
- Génie Procédé
- Aéronautique et Aviation
- Instruments de Tests et Mesures
- Division Sciences Physiques et Sciences Naturelles
- Division Recherche et industrie
- Division des Sciences de l’ingénieur
- Entreprise
- Contact
- Disponible