2 DOF ROBOT WORKSTATION

The Two Degrees of Freedom (2 DOF) Robot module helps students learn the fundamentals of robotics. When mounted on two Rotary Servo Base Units, you obtain a four-bar linkage robot. Students can learn real-world robotic concepts such forward and inverse kinematics, and end effector planar position control.

The 2 DOF Robot is particularly suitable for teaching intermediate robotic principles. It can be expanded to allow teaching of the 2 DOF Inverted Pendulum experiment. Applications of the 2 DOF Robot typically are pick-and-place robots used in manufacturing lines, such as PCB printing.

HOW IT WORKS

The 2 DOF Robot module is connected to two Rotary Servo Base Units, which are mounted at a fixed distance and control a 4-bar linkage system: two powered arms coupled through two non-powered arms. The system is planar and has two actuated and three unactuated revolute joints.

The goal of the 2 DOF Robot experiment is to manipulate the X-Y position of a four-bar linkage end effector. Such a system is similar to the kinematic problems encountered in the control of other parallel mechanisms that have singularities.

"My students use Quanser modules as a rapid prototype to choose and analyze different control scenarios. They start doing experiments very quickly."

Dr. Roxana Saint-Nom, Electrical Engineering Department Chair, CAERCEM Researcher, Buenos Aires Institute of Technology, Argentina

A popular application of the 2 DOF Robot experiment is the pickand-place robot used in manufacturing lines.

WORKSTATION COMPONENTS 2 DOF ROBOT EXPERIMENT

Component	Description	
Plant	2 x Servo Base Unit (SRV02)2 DOF Robot module	
Controller Design Environment ¹	Quanser QUARC [®] add-on for MATLAB [®] /Simulink [®] Quanser RCP Toolkit add-on for NI LabVIEW [™]	
Documentation	 Instructor workbook* Student workbook* User Manual* Quick Start Guide 	
Real-Time Targets ¹	Microsoft Windows®	
Data Acquisition Board ²	Quanser Q2-USB	
Amplifier	Quanser VoltPAQ-X2	
Others	Complete dynamic model Simulink [®] pre-designed controllers LabVIEW [™] pre-designed controllers	

Using 🔛 LabVIEW? This experiment can also be configured with NI myRIO and CompactRIO. For details contact Quanser@NI.com

SYSTEM SPECIFICATIONS 2 DOF ROBOT MODULE

CURRICULUM TOPICS PROVIDED

Model Topics

- Transfer function representation
- Kinematics

Control Topic

• PD

FEATURES

- 4-bar precision-crafted aluminum linkage system
- Can mount the 2 DOF Inverted Pendulum module for additional experiments (sold separately)
- 2 DOF robot module easily attaches to the Rotary Servo Base Unit
- Easy-connect cables and connectors

- Fully compatible with MATLAB[®]/Simulink[®] and LabVIEW™
- Fully documented system models and parameters provided for MATLAB®, Simulink[®], LabVIEW[™] and Maple[™]
- Open architecture design, allowing users to design their own controller

DEVICE SPECIFICATIONS

SPECIFICATION	VALUE	UNITS
Mass of 4-bar Linkage Module	0.335	kg
Mass of Single Link	0.065	kg
Length of Link	0.127	m
Link Moment of Inertia about Cog	8.74 x 10 ⁻⁵	kg.m ²
Link Moment of Inertia about Pivot	3.49 x 10 ⁻⁴	kg.m ²
2 DOF Robot Overall Dimensions (L x W x H)	40 x 30 x 20	cm
2 DOF Robot Total Mass	4.0	kg

* Hard copies are not included. Documentation is supplied in electronic format on a CD ¹ MATLAB[®]/Simulink[®], LabVIEW[™] and Microsoft Windows[®] license needs to be purchased separately ² Quanser QPIDe (PCIe-based data acquisition devices) is recommended when a deterministic real-time performance is required

